The ball, assumed as a material point, moves from position A inside the tube. Find the ball velocity at positions B and C and the pressure of the ball against the wall of the tube at position C. Ignore friction on the curved sections of the tube.



| m = 0.5 kg            |
|-----------------------|
| $V_A = 20m/s$         |
| $t_{AB}=2s$           |
| R=2m                  |
| $\mu = 0.20$          |
| $\alpha = 30^{\circ}$ |
| $\beta = 45^{\circ}$  |
|                       |



m=0.4kg  $V_A=0m/s$   $t_{BD}=2s$  R=0.2m  $\mu=0.15$   $\alpha=30^{\circ}$   $h_0=10cm$  k=1 N/cmAdditionally find,  $V_D$ 



m=0.2kg  $V_A=10m/s$   $t_{BD}=1s$  R=0.5m  $\mu=0.1$   $\alpha=60^\circ$   $k=1.2\,N/cm$ Additionally find, h
how much spring will deflect



 $m = 0.8 \ kg$   $V_A = 3m/s$   $t_{AB} = 0.2s$  R = 0.4m  $\mu = 0.15$   $\alpha = 45^{\circ}$ Additionally find,  $V_D$