Dynamics of complex motion

Example. The ball considered as a material point moves inside the cylindrical channel of body A, which is also in motion. Find the equation for the relative motion of this ball $x(t)$, taking the point O as its starting point. Also calculate the x coordinate and pressure of the ball on the channel wall when time t is given. Dane: $m=0,02 \mathrm{~kg}, \omega=\pi \mathrm{s}^{-1}, x_{o}=0 \mathrm{~m}, \dot{x}_{o}=0,2 \mathrm{~m} / \mathrm{s}, t=0,4 \mathrm{~s}, \mathrm{~h}=0,15 \mathrm{~m}$.

$$
m \vec{a}_{r}=\vec{F}+\vec{R}+\vec{D}
$$

External forces acting on the point $\vec{F}=\vec{G}$
必

Reaction forces acting on the point $\vec{R}=\vec{N}_{1}+\vec{N}_{2}$

Inertia forces acting on point \vec{D}, are related to accelerations. $\vec{D}_{\text {un }}$ force related to the normal lifting acceleration. Since $\omega=$ const there is no tangent component of rising acceleration.

\vec{D}_{C} force associated with Coriolis acceleration. Below are all the forces acting on a material point.

$$
\begin{gathered}
D_{u n}=m \omega^{2} r \\
D_{C}=2 m \omega * V_{w} * \sin \left(\vec{\omega}, \overrightarrow{V_{w}}\right)
\end{gathered}
$$

Since the vectors $\vec{\omega} i \overrightarrow{V_{w}}$ are perpendicular to each other, the sine of the angle between them is 1 . In addition, we do not know the relative velocity of the material point, but we know that this point moves along the OX axis, therefore its speed will be a derivative of the distance after x, so we can write.

$$
\begin{aligned}
& D_{C}=2 m \omega * \dot{x} \\
& \frac{O M}{r}=\sin \alpha \Rightarrow \frac{x}{r}=\sin \alpha \\
& m \ddot{x}=D_{\text {un }} \sin \alpha \\
& m \ddot{x}=m \omega^{2} r \sin \alpha \backslash m \\
& \ddot{x}=\omega^{2} r \sin \alpha \\
& \ddot{x}=\omega^{2} r \frac{x}{r} \\
& \ddot{x}=\omega^{2} x \\
& \ddot{x}-\omega^{2} x=0 \\
& x=e^{r t} ; \dot{x}=r e^{r t} ; \ddot{x}=r^{2} e^{r t} \\
& r^{2} e^{r t}-\omega^{2} e^{r t}=0 \backslash e^{r t} \\
& r^{2}-\omega^{2}=0 \\
& (r-\omega)(r+\omega)=0 \\
& r_{1}=\omega ; r_{2}=-\omega \\
& x=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t} \\
& x=C_{1} e^{\omega t}+C_{2} e^{-\omega t} \\
& x=C_{1} e^{\pi t}+C_{2} e^{-\pi t} \\
& \dot{x}=\pi C_{1} e^{\pi t}-\pi C_{2} e^{-\pi t} \\
& x(0)=0 \Rightarrow C_{1}+C_{2}=0 \Rightarrow C_{1}=-C_{2} \\
& \dot{x}(0)=0,2 \Rightarrow \pi C_{1}-\pi C_{2}=0,2 \Rightarrow-2 \pi C_{2}=0,2 \\
& C_{1}=0,03 \\
& C_{2}=-0,03 \\
& x=0,03 e^{\pi t}-0,03 e^{-\pi t} \\
& x(t)=0,097 m \\
& \dot{x}=0,094 C_{1} e^{\pi t}+0,094 C_{2} e^{-\pi t} \\
& \dot{x}(t)=0,357 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Determination of the pressure of the ball on the walls of the tube

$$
\begin{gathered}
m \ddot{y}=-N_{2}+D_{C}+D_{u n} \cos \alpha \\
\ddot{y}=0 \\
0=-N_{2}+D_{C}+D_{u n} \cos \alpha \\
N_{2}=D_{C}+D_{u n} \cos \alpha \\
N_{2}=2 m \omega * \dot{x}+m \omega^{2} r \frac{h}{r} \\
N_{2}=2 m \omega * \dot{x}+m \omega^{2} h \\
N_{2}=0,074 \\
m \ddot{z}=-N_{1}+G \\
\ddot{z}=0 \\
0=-N_{1}+G \\
N_{1}=G=0,1962 \\
N=\sqrt{N_{1}^{2}+N_{2}^{2}}=0,21 N
\end{gathered}
$$

The pressure of the ball against the wall is equal to the value of N, but it is opposite.

