
Inertia moments 

 We will begin this subject with moments of inertia for the system of material points. 

  

Let us assume that we have a material system consisting of n material points with masses mi, 

located at points Ai described by the leading vectors ri. 

𝑟𝑖⃗⃗ = 𝑥𝑖𝑖̂ + 𝑦𝑖𝑗̂ + 𝑧𝑖𝑘̂ 

The polar moment of inertia Io of the system of material points relative to point O is the sum 

of the products of masses mi and squares of their distance ri
2 from point O, i.e. 
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The moments of inertia Ixy, Iyz, Izx with respect to the xy, yx, zx planes of the material points 

system are the sums of products of masses mi and squares of their distance from these 

planes. So we have: 

𝐼𝑥𝑦 = ∑𝑚𝑖
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The moments of inertia Ix, Iy, Iz relative to the x, y, z axis, from the system of material points 

are the sums of products of masses mi and squares of their distance from these axes. So we 

have: 

𝐼𝑥 = ∑𝑚𝑖
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In addition to the moments of inertia defined above with respect to the point, planes and 

axes, also the quantities that we call deviant moments play an important role. 

The deviant moments Dxy, Dyz, Dzx of the system of material points are the sum of the 

products of masses mi with products of the distance from two perpendicular planes, yz and 

zx, zy and xy, xy and yz. These moments are expressed by the formulas: 

𝐷𝑥𝑦 = 𝐷𝑦𝑥 = ∑𝑚𝑖

𝑛
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Moments of deviation can have both positive and negative values, because in the above 

formulas, as opposed to moments of inertia, there are products of coordinates, not 

coordinate squares. 

In addition, if one of the two planes with respect to which we calculate deviant moments is 

the plane of symmetry of the material system, then the relevant deviant moments will be 

zero. 

Suppose the plane of symmetry is the xy plane. In this case, for each point Ai with the 

coordinates xi, yi, zi and mass mi correspond to the principle of symmetry, another point Ai' 

with the coordinates xi, yi, -zi with the same mass mi. The deviation moments of two points 

will be zero. 

𝑚𝑖𝑥𝑖𝑧𝑖 + 𝑚𝑖𝑥𝑖(−𝑧𝑖) = 𝑚𝑖𝑥𝑖(𝑧𝑖 − 𝑧𝑖) = 0 

𝑚𝑖𝑦𝑖𝑧𝑖 + 𝑚𝑖𝑦𝑖(−𝑧𝑖) = 𝑚𝑖𝑦𝑖(𝑧𝑖 − 𝑧𝑖) = 0 

that is, two of the three moments of deviation will be zero 

𝐷𝑧𝑥 = 𝐷𝑦𝑧 = 0 

It is easy to notice that if the material system has two planes of symmetry, then all deviation 

moments will be equal to zero. 

 

 

 

 

 

 

 

 

 



Moments of inertia of the solid 

  

If we divide a solid with mass m into n small elements with masses mi, then approximate 

values of moments of inertia of these elements, treated as material points, can be calculated 

from formulas for moments for the system of material points. 

The exact values of the moments of inertia are obtained by taking the sum limit with the 

number of elements n striving to infinity and the mass striving to zero. Then instead of sums 

we get the whole mass m. 

Polar moment of inertia 

𝐼𝑂 = lim
𝑛→∞

∑𝑚𝑖

𝑛

𝑖=1

𝑟𝑖
2 = ∫𝑟2 𝑑𝑚 = ∫(𝑥2 + 𝑦2 + 𝑧2)𝑑𝑚 

It is known from the integral calculus that the above equation can be broken down into the 

sum of individual integrals. 

𝐼𝑂 = ∫(𝑥2 + 𝑦2 + 𝑧2)𝑑𝑚 = ∫𝑥2 𝑑𝑚 + ∫𝑦2𝑑𝑚 + ∫𝑧2𝑑𝑚 

Integrals occurring in the above expression are moments of inertia relative to the planes. 

𝐼𝑥𝑦 = ∫𝑧2𝑑𝑚 ; 𝐼𝑦𝑧 = ∫𝑥2 𝑑𝑚; 𝐼𝑧𝑥 = ∫𝑦2𝑑𝑚 

The formula for the polar moment of inertia results in a relationship 

𝐼𝑂 = 𝐼𝑥𝑦 + 𝐼𝑦𝑧 + 𝐼𝑧𝑥 

The polar moment of inertia is equal to the sum of the moments of inertia relative to the 

three planes passing through this pole. 

 

 

 

 



Dependencies on moments of inertia relative to the axis are: 

𝐼𝑥 = ∫(𝑦2 + 𝑧2) 𝑑𝑚 = ∫𝑦2𝑑𝑚 + ∫𝑧2𝑑𝑚

𝐼𝑦 = ∫(𝑧2 + 𝑥2) 𝑑𝑚 = ∫𝑧2𝑑𝑚 + ∫𝑥2 𝑑𝑚

𝐼𝑧 = ∫(𝑥2 + 𝑦2) 𝑑𝑚 = ∫𝑥2 𝑑𝑚 + ∫𝑦2𝑑𝑚

 

From the above formulas, the relationship between the moments of inertia about the axis 

and about the planes can be seen. 

The moment of inertia about the axis is equal to the sum of the moments of inertia about 

two planes intersecting along this axis. 

By adding formulas and taking into account the relationship to the moment of inertia with 

respect to the pole, we get 

𝐼𝑂 =
1

2
(𝐼𝑥 + 𝐼𝑦 + 𝐼𝑧) 

The polar moment of inertia is equal to half the sum of the moments of inertia about the 

three perpendicular axes passing through that pole. 

Deviant moments for a solid can be written as 

𝐷𝑥𝑦 = 𝐷𝑦𝑥 = ∫𝑥𝑦𝑑𝑚

𝐷𝑦𝑧 = 𝐷𝑧𝑦 = ∫𝑦𝑧𝑑𝑚

𝐷𝑥𝑧 = 𝐷𝑧𝑥 = ∫𝑥𝑧𝑑𝑚

 

If we substitute the dependence for all previous equations that dm = dV, where  - the 

density of the solid at the point with coordinates x, y, z, and V volume and we assume that 

the solid is homogeneous, then we will obtain formulas in the following form. 

Polar moment of inertia 

𝐼𝑂 = 𝜌∫(𝑥2 + 𝑦2 + 𝑧2)𝑑𝑉 

Moments of inertia relative to the planes 

𝐼𝑥𝑦 = 𝜌∫𝑧2𝑑𝑉 ; 𝐼𝑦𝑧 = 𝜌∫𝑥2 𝑑𝑉; 𝐼𝑧𝑥 = 𝜌∫𝑦2𝑑𝑉 

Moments of inertia relative to the axis 

𝐼𝑥 = 𝜌∫(𝑦2 + 𝑧2) 𝑑𝑉

𝐼𝑦 = 𝜌∫(𝑧2 + 𝑥2) 𝑑𝑉

𝐼𝑧 = 𝜌∫(𝑥2 + 𝑦2) 𝑑𝑉

 

 



Deviant moments for a solid 

𝐷𝑥𝑦 = 𝐷𝑦𝑥 =  𝜌∫𝑥𝑦𝑑𝑉

𝐷𝑦𝑧 = 𝐷𝑧𝑦 = 𝜌 ∫𝑦𝑧𝑑𝑉

𝐷𝑥𝑧 = 𝐷𝑧𝑥 =  𝜌∫𝑥𝑧𝑑𝑉

 

The integrals found in the above formulas are called geometric moments of inertia, which 

depend only on the shape of the body. 

Each moment of inertia I can be generally written as the product of the total mass of the 

system m and the square of a certain distance r2 from the adopted plane, axis or pole. This 

distance is called the radius of inertia of the body relative to a given plane, axis, pole. 

𝐼 = 𝑚𝑟2 

The moment of inertia defined in this way has practical application when calculating the 

moments of inertia of machine elements. 

Moments of inertia and deviation on a plane 

 

The moment of inertia of given figure relative to the Ox axis will be called 

𝐼𝑥 = 𝜌∫𝑦2 𝑑𝐴 

he moment of inertia of given figure relative to the Oy axis will be called 

𝐼𝑦 = 𝜌∫𝑥2 𝑑𝐴 

Knowing the values of the moments of inertia, you can determine the so-called arm or radius 

of inertia 

𝑖𝑥 = √
𝐼𝑥
𝐴

; 𝑖𝑦 = √
𝐼𝑦

𝐴
; 

A moment of deviation 

𝐷𝑥𝑦 =  𝜌∫𝑥𝑦𝑑𝐴 

 



The x and y coordinates indicate the coordinates of the center of gravity of the surface area 

element dA in the given Ox and Oy axis system. 

Similarly to the 3D system in a planar system, the deviation moment will be zero if one of the 

axes is the axis of symmetry. 

 

In the drawing, we have a figure with one axis of symmetry Oy. Let's divide the field of figures 

into two symmetrical elements with respect to this axis. Each element of the field with 

coordinates x, y corresponds to a symmetrical element with coordinates -x, y. The moments 

of deviation of such two elements with respect to the axes Ox and Oy are equal in absolute 

value and differ only by a sign. 

𝐷𝑥𝑦 = ∫(−𝑥)𝑦𝑑𝐴1 + ∫𝑥𝑦𝑑𝐴2 = 0 

The polar moment of inertia can be defined as 

𝐼𝑂 = ∫𝑟2 𝑑𝐴 

we know that 

𝑟2 = 𝑥2 + 𝑦2 

hence 

𝐼𝑂 = ∫𝑟2 𝑑𝐴 = ∫𝑥2 + 𝑦2 𝑑𝐴 = ∫𝑥2 𝑑𝐴 + ∫𝑦2 𝑑𝐴 = 𝐼𝑥 + 𝐼𝑦 

The polar moment of inertia is equal to the sum of the axial moments of inertia. 

 

 

 

 

 

 



Parallel transformation of moments of inertia (Steiner's theorem) 

 

Let's assume two coordinate systems x, y, z and x ', y', z' with parallel axes respectively. The 

system x, y, z originates at any point O, and the system x ', y', z' in the center of mass of the 

solid C. The center of mass of the solid in the x, y, z system is described by the rc vector. 

𝑟𝑐⃗⃗ = 𝑥𝑐𝑖̂ + 𝑦𝑐𝑗̂ + 𝑧𝑐𝑘̂ 

The position of the mass element dm is determined in the x, y, z system by the vector r. 

𝑟 = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂ 

and in the system x ', y', z' through the vector r'. 

𝑟′⃗⃗ = 𝑥′𝑖̂ + 𝑦′𝑗̂ + 𝑧′𝑘̂ 

these vectors are related by dependence 

𝑟 = 𝑟𝑐⃗⃗ + 𝑟′⃗⃗  

therefore the coordinates of the mass element in the x, y, z system will express formulas 

𝑥 = 𝑥𝑐 + 𝑥′; 𝑦 = 𝑦𝑐 + 𝑦′; 𝑧 = 𝑧𝑐 + 𝑧′; 

The polar moment of inertia relative to point O is expressed by the formula 

𝐼𝑂 = ∫𝑟2 𝑑𝑚 = ∫(𝑟𝑐 + 𝑟′)2 𝑑𝑚 = ∫𝑟𝑐
2 𝑑𝑚 + 2∫𝑟𝑐 𝑟′𝑑𝑚 + ∫𝑟′2 𝑑𝑚

= 𝑟𝑐
2 ∫𝑑𝑚 +2𝑟𝑐 ∫𝑟′ 𝑑𝑚 + ∫𝑟′2 𝑑𝑚 

The first integral is the total mass of the solid, and the second is the static moment relative to 

the center of mass, i.e. it is equal to zero. Therefore 



𝑚 = ∫𝑑𝑚  

and 

∫𝑟′ 𝑑𝑚 = 0 

The third of integrals is the polar moment of inertia relative to the center of mass 

𝐼𝑐 = ∫𝑟′2 𝑑𝑚 

Ultimately the polar moment of inertia relative to any point 

𝐼𝑂 = 𝐼𝑐 +  𝑚𝑟𝑐
2 

The above theorem is called the Steiner theorem or parallel transformation of moments of 

inertia. The moment of inertia of a material body relative to any axis is equal to the sum of 

the moment of inertia relative to the parallel axis passing through the center of mass and the 

product of the mass and the square of the distance between the axes. 

Steiner's theorem on planes 

𝐼𝑥𝑦 = 𝐼𝑥′𝑦′ + 𝑚𝑧𝑐
2

𝐼𝑦𝑧 = 𝐼𝑦′𝑧′ + 𝑚𝑥𝑐
2

𝐼𝑧𝑥 = 𝐼𝑧′𝑥′ + 𝑚𝑦𝑐
2

 

Steiner's theorem on the axis 

𝐼𝑥 = 𝐼𝑥′𝑦′ + 𝐼𝑧′𝑥′ + 𝑚(𝑦𝑐
2 + 𝑧𝑐

2)

𝐼𝑦 = 𝐼𝑥′𝑦′ + 𝐼𝑦′𝑧′ + 𝑚(𝑧𝑐
2 + 𝑥𝑐

2)

𝐼𝑧 = 𝐼𝑦′𝑧′ + 𝐼𝑧′𝑥′ + 𝑚(𝑥𝑐
2 + 𝑦𝑐

2)

 

Steiner theorem for moments of deviation 

𝐷𝑥𝑦 = 𝐷𝑥′𝑦′ + 𝑚𝑥𝑐𝑦𝑐

𝐷𝑦𝑧 = 𝐷𝑦′𝑧′ + 𝑚𝑦𝑐𝑧𝑐

𝐷𝑧𝑥 = 𝐷𝑧′𝑥′ + 𝑚𝑧𝑐𝑥𝑐

 

 

 

 

 

 

 

 

 

 



Steiner theorem for a plane system 

 

The coordinates of point C (center of gravity) in the Oxy system have the values a and b. 

𝐼𝑥 = ∫𝑦2 𝑑𝐴 

𝐼𝑦 = ∫𝑥2 𝑑𝐴 

By entering relationships between coordinates of a point with a parallel axis shift 

𝑥 = 𝑥𝑂 + 𝑏; 𝑦 = 𝑦𝑂 + 𝑎; 

𝐼𝑥 = ∫(𝑦𝑂 + 𝑎)2 𝑑𝐴 = ∫𝑦𝑂
2 𝑑𝐴 + 2∫𝑦𝑂 𝑎𝑑𝐴 + ∫𝑎2 𝑑𝐴

= 𝑦𝑂
2 ∫𝑑𝐴 +2𝑦𝑂 ∫𝑎 𝑑𝐴 + ∫𝑎2 𝑑𝐴 

After the reduction, similarly as in the case of a solid, we get the Steiner's theorem for 

moments of inertia in the case of a plane system. 

𝐼𝑋 = 𝐼𝑋𝑂 + 𝑎2𝐴 

𝐼𝑌 = 𝐼𝑌𝑂 + 𝑏2𝐴 

And for moments of deviation 

𝐷𝑋𝑌 = 𝐷𝑋𝑂𝑌𝑂 +  𝑎𝑏𝐴 

 

 

 

 

 

 

 



Rotational transformation of moments of inertia 

 

To be able to talk about rotational transformation, the definition of the main axes of inertia 

should be clarified at the beginning. 

The main axes of inertia - the axes of the coordinate system, perpendicular to each other 

having the property that the moments of deviation relative to these axes are zero. If these 

axes pass through the center of mass of the system (point C), we call them the main central 

inertia axes, one of which is relatively maximum and the other minimum. 

In the drawing above, it can be clearly seen that the figure is not in the major axis system. 

Let's introduce a system that will be initially rotated by a certain angle . 

 

Now we need to find the moments of inertia in the rotated coordinate system. To do this, 

save the coordinates of the dm element in the ,  rotated system. 

 

𝜉 = 𝑦 sin𝛼 + 𝑥 cos𝛼 

𝜂 = 𝑦 cos𝛼 − 𝑥 sin𝛼 



Having the coordinates of the element dm in the rotated system, we can calculate the 

moments of inertia for this system I, I relative to the axis O, O and the moment of 

deviation D. 

𝐼𝜉 = ∫𝜂2 𝑑𝑚 = ∫(𝑦 cos𝛼 − 𝑥 sin𝛼)2𝑑𝑚 = 𝐼𝑥𝑐𝑜𝑠
2𝛼 − 𝐼𝑥𝑦𝑠𝑖𝑛2𝛼 + 𝐼𝑦𝑠𝑖𝑛

2𝛼 

𝐼𝜂 = ∫𝜉2 𝑑𝑚 = ∫(𝑦 sin𝛼 + 𝑥 cos𝛼)2𝑑𝑚 = 𝐼𝑥𝑠𝑖𝑛
2𝛼 + 𝐼𝑥𝑦𝑠𝑖𝑛2𝛼 + 𝐼𝑦𝑐𝑜𝑠

2𝛼 

𝐷𝜉𝜂 = ∫𝜉𝜂 𝑑𝑚 = ∫(𝑦 sin𝛼 + 𝑥 cos𝛼)(𝑦 cos𝛼 − 𝑥 sin𝛼)𝑑𝑚

= 𝐷𝑥𝑦𝑐𝑜𝑠2𝛼 +
1

2
𝑠𝑖𝑛2𝛼 (𝐼𝑥 − 𝐼𝑦) 

We know that for the main axes the moment of deviation must be zero. Thus, the equation 

for angle O determining the position of the main inertia axes in relation to the Oxy system is 

obtained. 

(𝐼𝑥 − 𝐼𝑦)

2
 𝑠𝑖𝑛2𝛼𝑂 + 𝐷𝑥𝑦𝑐𝑜𝑠2𝛼𝑂 = 0 

𝑡𝑎𝑛2𝛼𝑂 =
2𝐷𝑥𝑦

(𝐼𝑦 − 𝐼𝑥)
 

𝛼𝑂 =
1

2
arctan (

2𝐷𝑥𝑦

𝐼𝑦 − 𝐼𝑥
) 

After determining the angle O, the values of the main moments of inertia can be calculated 

𝐼1 = 𝐼𝑚𝑎𝑥 =
1

2
(𝐼𝑥 + 𝐼𝑦) +

1

2
√(𝐼𝑥 − 𝐼𝑦)

2
+ 4𝐷𝑥𝑦

2 

𝐼2 = 𝐼𝑚𝑖𝑛 =
1

2
(𝐼𝑥 + 𝐼𝑦) −

1

2
√(𝐼𝑥 − 𝐼𝑦)

2
+ 4𝐷𝑥𝑦

2 

For the inverse problem, when the directions of the main axes and moments of inertia about 

these axes are known, and there is a need to determine moments of inertia relative to the 

system rotated by the angle  we use equations 

𝐼𝑥 = 𝐼1;  𝐼𝑦 = 𝐼2;  𝐷𝑥𝑦 = 0 

𝐼𝜉 = 𝐼1 𝑐𝑜𝑠
2𝛼 + 𝐼2 𝑠𝑖𝑛

2𝛼 

𝐼𝜂 = 𝐼1 𝑠𝑖𝑛
2𝛼 + 𝐼2 𝑐𝑜𝑠

2𝛼 

𝐷𝜉𝜂 =
(𝐼1 − 𝐼2)

2
 𝑠𝑖𝑛2𝛼 

 

 

 

 



Ex. 1. For the rod with the length l and mass m shown in the figure, located in the main axis 

system, find the values of the moments of inertia and the moment of deviation in the Oxy 

system. 

 

𝛼 = 30° =
𝜋

3
; 𝐼1 = 𝐼𝑚𝑎𝑥 =

𝑚𝑙2

3
; 𝐼2 = 𝐼𝑚𝑖𝑛 = 0; 𝐷12 = 0; 𝐼𝑥, 𝐼𝑦, 𝐷𝑥𝑦 =? 

We use the equations shown above 

𝐼𝑥 = 𝐼1 𝑐𝑜𝑠
2𝛼 + 𝐼2 𝑠𝑖𝑛

2𝛼 =
𝑚𝑙2

3
∗
3

4
=

𝑚𝑙2

4
 

𝐼𝑦 = 𝐼1 𝑠𝑖𝑛
2𝛼 + 𝐼2 𝑐𝑜𝑠

2𝛼 =
𝑚𝑙2

3
∗
1

4
=

𝑚𝑙2

12
 

𝐷𝑥𝑦 =
(𝐼1 − 𝐼2)

2
 𝑠𝑖𝑛2𝛼 = 𝑠𝑖𝑛

2𝜋

3
∗

𝑚𝑙2

3 − 0

2
=

√3

12
𝑚𝑙2 

Ex. 2. Inverse problem. The values of the moments of inertia for the Oxy axis system are 

known. Find the values of the main moments and the angle by which the Oxy system should 

be rotated to find the main axis system. 

 

𝛼 = 30° =
𝜋

3
; 𝐼𝑥 =

𝑚𝑙2

4
; 𝐼𝑦 =

𝑚𝑙2

12
; 𝐷𝑥𝑦 =

√3

12
𝑚𝑙2;  𝐼𝑚𝑎𝑥, 𝐼𝑚𝑖𝑛, 𝛼𝑂 =? 



To solve this example, use the first equations of the subject related to rotational 

transformation. 

𝐼1 = 𝐼𝑚𝑎𝑥 =
1

2
(𝐼𝑥 + 𝐼𝑦) +

1

2
√(𝐼𝑥 − 𝐼𝑦)

2
+ 4𝐷𝑥𝑦

2

=
1

2
(
𝑚𝑙2

4
+

𝑚𝑙2

12
) +

1

2
√(

𝑚𝑙2

36
)

2

+ 4(
√3

12
𝑚𝑙2)2 =

𝑚𝑙2

3
 

𝐼2 = 𝐼𝑚𝑖𝑛 =
1

2
(𝐼𝑥 + 𝐼𝑦) −

1

2
√(𝐼𝑥 − 𝐼𝑦)

2
+ 4𝐷𝑥𝑦

2 =
1

2
(
𝑚𝑙2

4
+

𝑚𝑙2

12
)

−
1

2
√(

𝑚𝑙2

36
)

2

+ 4(
√3

12
𝑚𝑙2)2 = 0 

𝛼𝑂 =
1

2
arctan(

2𝐷𝑥𝑦

𝐼𝑦 − 𝐼𝑥
) =

1

2
arctan(

2
√3
12 𝑚𝑙2

𝑚𝑙2

12 −
𝑚𝑙2

4

) = −30° 

Angle O tells us how much we need to rotate our system, taking Ox as the reference axis. 

Because we have a negative angle, it means that we must rotate our system 30o down. 

 

The second important issue is marking which axis is the maximum axis and which is the 

minimum. To be able to determine this, we need to look at the value of the moment of 

deviation for our initial system. If the deviation moment is greater than zero, the obtuse 

angle will be between the axis Ox and the maximum moment of inertia. however, if the 

deviation moment value is negative, then we have an acute angle between the Ox axis and 

the maximum axis of the moment of inertia. 

  



Ex. 3. Find the moment of inertia relative the axis “z” for a thin homogeneous ABC rod. Part 

AB is perpendicular to Oz, and part BC connected to the Oz axis at an angle . Data: AB = BC = 

a, , mAB=mBC=m. 

 

The system can be considered separately as an AB and BC member assembly. 

𝐼𝑧 = 𝐼𝑧𝐴𝐵 + 𝐼𝑧𝐵𝐶 

Moment of inertia for segment AB 

𝐼𝑧𝐴𝐵 = ∫(𝑥2 + 𝑦2) 𝑑𝑚 

Since we are dealing with a bar, the size along the axis y = 0, therefore 

 

𝐼𝑧𝐴𝐵 = ∫𝑥2 𝑑𝑚 

Now we just need to define what dm is to us. 

𝑑𝑚 = 𝜌𝑑𝑥 

𝐼𝑧𝐴𝐵 = ∫ 𝑥2
𝑎

0

𝜌𝑑𝑥 =
1

3
𝜌𝑎3 

𝑚 = 𝜌𝑎 → 𝜌 =
𝑚

𝑎
 

𝐼𝑧𝐴𝐵 =
1

3
𝑚𝑎2 

 



Moment of inertia for part BC 

 

𝐼𝑧𝐵𝐶 = ∫(𝑥2 + 𝑦2) 𝑑𝑚 

Since we are dealing with a bar, the size along the axis y = 0, therefore 

𝐼𝑧𝐵𝐶 = ∫𝑥2 𝑑𝑚 

In order to make calculations easier, let's introduce the Ou axis against which we will perform 

calculations. 

Now we just need to define what dm is to us. 

𝑑𝑚 = 𝜌𝑑𝑢 

Because our output integral is related to values on the x axis, we must express these values 

on the u axis. 

𝑥

𝑢
= 𝑠𝑖𝑛𝛼 → 𝑥 = 𝑢𝑠𝑖𝑛𝛼 

Hence 

𝐼𝑧𝐵𝐶 = ∫𝑥2 𝑑𝑚 = ∫(𝑢𝑠𝑖𝑛𝛼)2 𝑑𝑚 = ∫ 𝑢2
𝑎

0

𝑠𝑖𝑛2𝛼𝜌𝑑𝑢 =
1

3
𝜌𝑎3𝑠𝑖𝑛2𝛼 

𝑚 = 𝜌𝑎 → 𝜌 =
𝑚

𝑎
 

𝐼𝑧𝐵𝐶 =
1

3
𝑚𝑎2𝑠𝑖𝑛2𝛼 

𝐼𝑧 = 𝐼𝑧𝐴𝐵 + 𝐼𝑧𝐵𝐶 

𝐼𝑧 =
1

3
𝑚𝑎2 +

1

3
𝑚𝑎2𝑠𝑖𝑛2𝛼 =

1

3
𝑚𝑎2(1 + 𝑠𝑖𝑛2𝛼) 

 

 

 

 



Ex. 4. Calculate the axial moments of inertia Ix, Iy, Iz and the moments of deviation Dxy, Dyz, Dxz 

from a homogeneous triangular plate with a mass m of base equal to a and height h. 

 

The x axis is perpendicular to the symmetry plane of the board, so it is one of the main axes 

of the system. Hence Dxz = Dxy = 0. 

One more moment of deviation remains to be calculated. We will calculate this moment by 

definition. 

𝐷𝑦𝑧 = ∫𝑦𝑧𝑑𝑚 = 𝜌∬𝑦𝑧𝑑𝑦𝑑𝑧 

At this point, one should wonder how the coordinate values change after the y axis and after 

the z axis. If we assume that the values on the y axis change from 0 to a, then using the y-axis 

function we should describe the change of coordinates on the z axis. 

 

𝐷𝑦𝑧 = ∫𝑦𝑧𝑑𝑚 = 𝜌∬𝑦𝑧𝑑𝑦𝑑𝑧 = 𝜌 (∫ 𝑦𝑑𝑦∫ 𝑧𝑑𝑧

ℎ
𝑎
(𝑎−𝑦)

0

𝑎

0

) = 𝜌
𝑎2ℎ2

24
 

𝜌 =
2𝑚

𝑎ℎ
 

𝐷𝑦𝑧 =
𝑚𝑎ℎ

12
 

 



Moments of inertia about the x, y, z axis. 

𝐼𝑥 = ∫(𝑧2 + 𝑦2) 𝑑𝑚 = 𝜌∫ 𝑦2𝑑𝑦∫ 𝑑𝑧

ℎ
𝑎
(𝑎−𝑦)

0

𝑎

0

+ 𝜌∫ 𝑑𝑦∫ 𝑧2𝑑𝑧

ℎ
𝑎
(𝑎−𝑦)

0

𝑎

0

=
𝑚𝑎ℎ

3
 

𝐼𝑦 = ∫(𝑥2 + 𝑧2) 𝑑𝑚 = ∫𝑧2 𝑑𝑚 =  𝜌∫ 𝑑𝑦∫ 𝑧2𝑑𝑧

ℎ
𝑎
(𝑎−𝑦)

0

𝑎

0

=
𝑚ℎ2

6
 

𝐼𝑧 = ∫(𝑥2 + 𝑦2) 𝑑𝑚 = ∫𝑦2 𝑑𝑚 =  𝜌∫ 𝑦2𝑑𝑦∫ 𝑑𝑧

ℎ
𝑎
(𝑎−𝑦)

0

𝑎

0

=
𝑚𝑎2

6
 


