1. Having the equation of motion of point M , determine its trajectory and for the given time t_{1} determine: position, velocity, accelerations and radius of curvature.

$x=x(t)$	$y=y(t)$	t_{1}
$-2 t^{2}+3$	$-5 t$	0,5
$-\cos \frac{\pi}{3} t^{2}+3$	$\sin \frac{\pi}{3} t^{2}-1$	1
$-\frac{3}{t+2}$	$3 t+6$	2
$3-3 t^{2}+t$	$4-5 t^{2}+\frac{5}{3} t$	1

2. For the M point located on the presented mechanism, determine its trajectory and for the given time t_{1} determine: position, velocity, accelerations and radius of curvature

	$\begin{gathered} l=54 c m \\ r=30 c m \\ \varphi(t)=m t \\ t_{1}=\frac{1}{6} s \end{gathered}$
	$\begin{aligned} & l=40 c m \\ & s(t)=40 \sin \pi \\ & t_{1}=\frac{1}{4} s \end{aligned}$

