
Kinematics of the particle (material point) 

Kinematics is a part of mechanics dealing with the movement of bodies, without 

entering into the relationship between the movement of the examined body (in 

particular of the point) and the forces acting on it. 

In the case of kinematics, we will consider what happens to the body in space over 

time. We will describe this type of relationship as the geometry of motion. 

Movement of the body - changing the position of this body in relation to another one 

taken from a stationary body (reference body). In the case of mechanics, the Earth is 

usually taken as the reference body. 

Reference system - a system that is fixed and bound to a reference body. The most 

common reference system is a rectangular coordinate system (Euclidean space). 

Euclidean space 

 

x, y, z-coordinates of the moving point P with respect to the fixed coordinate system 

(reference system). 

In order to describe the movement of this point, it is necessary to determine how 

particular coordinates change with time. 

 

𝑥 = 𝑓1(𝑡);  𝑦 = 𝑓2(𝑡);  𝑧 = 𝑓3(𝑡)  

 

We will call the above equations the kinematic equations of motion. 

Point TRACK - line along which point P moves in space. 

Parametric equation of the point track - in the equation the time is a parameter. 

After removing time, we get the relations between the x, y, z coordinates (i.e. the 

path of motion). 



We can also describe the motion of a point in terms of a vector radius 𝑟 from time 

𝑟 = 𝑟(𝑡). 

Vector components 

𝑟 = 𝑟𝑥 + 𝑟𝑦 + 𝑟𝑧 = 𝑟𝑥𝑖̂ + 𝑟𝑦𝑗̂ + 𝑟𝑧�̂� 

𝑟𝑥 = 𝑥(𝑡);     𝑟𝑦 = 𝑦(𝑡);    𝑟𝑧 = 𝑧(𝑡) 

𝑟 = 𝑖̂(𝑡) + 𝑗̂(𝑡) + �̂�(𝑡) 

Where 𝑖̂;  𝑗̂;  �̂� are the versors of the reference coordinate system. 

We know very well that we do not always have to move only in a rectangular system, 

and in some cases it is better to operate in a different coordinate system. So let's 

start by describing the movement of a point on the path using an arc coordinate. 

When the path of a moving point P is known, it is possible to describe the position of 

this point by specifying the coordinate s measured along the path from a full 

stationary point Po. 

 

s - arc coordinate equal to the arc length PoP, 

When the point P moves, then s is a function of time 

𝑠 = 𝑓(𝑡) 

Equation of motion of a point on a track 

 

 

 

 

 

 



Equations of motion of a point in curvilinear coordinates 

In addition to rectangular coordinates, the path of a point can be defined by 

curvilinear coordinates. 

 

Polar system on a plane 

Let's start with a polar system on a plane. In such a system, a point moves only in one 

plane, and its instantaneous position can be determined by specifying the length of 

the leading radius 𝑟 and the angle 𝜙 with the polar axis. The polar axis is the axis for 

which 𝜙 = 0. 

 

𝑟 = 𝑓1(𝑡);  𝜙 = 𝑓2(𝑡) 

Transition from polar coordinates to the 
Cartesian system 
 

𝑥 = 𝑟 cos 𝜙 
𝑦 = 𝑟𝑠𝑖𝑛𝜙 

Transition from the Cartesian system to 
the polar system 
 

𝑟 = √𝑥2 + 𝑦2 

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦

𝑥
 

 

Polar system in space (spherical) 

The position of the point is described by the vector 𝑟, its length and angles 𝜃 and 𝜙. 

Equation of motion 

 



𝑟 = 𝑓1(𝑡);  𝜙 = 𝑓2(𝑡);  𝜃 = 𝑓3(𝑡) 

 

Transition from spherical coordinates to 
the Cartesian system 
 

𝑥 = 𝑟 sin 𝜃 cos 𝜙 
𝑦 = 𝑟 sin 𝜃 𝑠𝑖𝑛𝜙 

𝑧 = 𝑟 cos 𝜃 

Transition from the Cartesian system to 
the spherical system 
 

𝑟 = √𝑥2 + 𝑦2 + 𝑧2 

𝜙 = 𝑎𝑟𝑐𝑐𝑜𝑠
𝑦

𝑥
 

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠
𝑧

𝑟
 

 

Cylindrical coordinate system 

Position of the point defined by: 

z - position coordinate 

 - distance from the z axis 

 - angle 

 
𝑧 = 𝑓1(𝑡);  𝜌 = 𝑓2(𝑡);  𝜙 = 𝑓3(𝑡) 

Transition from cylindrical coordinates to 
the Cartesian system 
 

𝑥 = 𝜌 cos 𝜙 
𝑦 = 𝜌𝑠𝑖𝑛𝜙 

𝑧 = 𝑧 

Transition from the Cartesian system to 
the cylindrical system 
 

𝜌 = √𝑥2 + 𝑦2 

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦

𝑥
 

𝑧 = 𝑧 
 

 

 

 

 



 

Example 1. The path of the point P is a circle with the radius R. Describe the 

movement of this point using the radius vector 𝑟. Take the center of the circle at the 

center of the coordinate system. 

We will begin the solution of the task by drawing a coordinate system. 

 

Then, according to the data in the problem, let's place the center of the circle in the 

center of our coordinate system. 

 

Assume that the point started to move from the point Po, which lies on the axis X. 

 



 

The instantaneous position of the point is determined by specifying the arc 

coordinate s equal to the arc length PoP. 

We know that 

𝑠 = 𝑟 ∗ 𝜙 

𝑠 = 𝑟 ∗ 𝜙(𝑡) 

𝜙(𝑡) – the angle of rotation of the radius vector 

 

now going from Cartesian coordinates we get 



 

𝑟 = √𝑥2 + 𝑦2 

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦

𝑥
 

Finally, we can write 

𝑠 = 𝑟 ∗ 𝜙 

𝑠 = √𝑥2 + 𝑦2 ∗  𝑎𝑟𝑐𝑡𝑎𝑛
𝑦

𝑥
 

 

Example 2. Given are the equations of motion of the point P moving in the Oxy plane. 

𝑥 = 3 + 2𝑡; 𝑦 = −2𝑡, determine the trajectory of the point. 

At the beginning, as in the previous task, let's insert a coordinate system. 

 

Next, let's find the equation of the trajectory. We can see that the equations given in 

the problem are parametric equations of motion, thanks to which we know what the 

position of the point is for a given time. Therefore, our variable parameter is time. To 

find an equation that shows us the trajectories of a point's motion, we need to get rid 

of time from the given equations. 

𝑡 = −
𝑦

2
→ 𝑥 = 3 + 2 (−

𝑦

2
) = 3 − 𝑦 

 



We can write the point path equation as follows 

𝑥 = 3 − 𝑦 

or 

𝑦 = 3 − 𝑥 

Let's check where the point is at time t = 0 

𝑥 = 3 + 2𝑡 

𝑦 = −2𝑡 

For this purpose, in the given parametric equations for motion, we change the time t 

to a value equal to 0. 

𝑥(𝑡 = 0) = 3 

𝑦(𝑡 = 0) = 0 

  

Finally, let's also put the designated path of our point on the graph. 

 

 

 



 

VELOCITY AND ACCELERATION 

Velocity 

We begin our deliberations with the velocity of the material point. Let us consider the 

movement of point M from point M1 to point M2. It can be seen that the path 

covered by the point equals some s equal to the arc length M1M2. 

 

We will assume that the point is at M1 at time t1 and at M2 at time t2, where: 

𝑡2 = 𝑡1 + ∆𝑡 

 

The position of the point in M1 and M2 can be described with the help of the vector 𝑟1 

and 𝑟2. It can be seen that the determination of the geometric increase of the vector 

r will be of significant importance for determining the change in position. 

 

This increase can be written as follows. 

∆𝑟 = 𝑟2(𝑡2) − 𝑟1(𝑡!) 



 

The ratio of the vector 𝑟 increase to the time in which this increase took place is 

called the average speed. 

�⃗⃗�𝑎𝑣 =
∆𝑟

∆𝑡
 

 

The average velocity vector �⃗⃗�𝑎𝑣 has a chord direction. In all practical measurements 

we always determine the average value, which depends on the distance between 

points M1 and M2. It depends on the point's movement and the choice of points on 

the movement path. 

Besides the average speed, there is the concept of instantaneous velocity �⃗⃗�. The 

instantaneous velocity vector will exist if the radius 𝑟 is differentiable. It is an abstract 

concept, but it is of great importance and uniquely characterizes the movement at a 

given moment. 

If we assume that ∆𝑡 → 0 and ∆𝑠 → 𝑚𝑖𝑛, then the chord will go to the tangent. 

Hence the velocity vector will also be tangent to the path of motion. 

Instantaneous velocity 

�⃗⃗� = lim
∆𝑡→0

∆𝑟

∆𝑡
=

𝑑𝑟

𝑑𝑡
= �̇�(𝑡) 

 

 

 

 

 



 

HODOGRAPH OF VELOCITY 

Let us assume that the path l of a moving point M describes the end of the vector 𝑟 

which beginning is a point O. The velocities 𝑉𝑖
⃗⃗⃗ at successive points Mi are tangent to 

this path of motion. 

 

If we move the velocity vectors parallel to the common point O1, then the ends of 

these vectors will lie on the line marked h, called the HODOGRAPH of the velocity of a 

given point M. 

 

 

 

 

 

 

 

 



 

Acceleration 

Let us assume that the point follows the curve l, with the velocity �⃗⃗�1  at M1 and the 

velocity �⃗⃗�2 at M2.  

 

We will assume that the point is at M1 at time t1 and at M2 at time t2, where: 

𝑡2 = 𝑡1 + ∆𝑡 

 

Velocity increases between points M1 and M2. 

 

∆�⃗⃗� = �⃗⃗�2 − �⃗⃗�1 

 

The ratio of the vector �⃗⃗� increase to the time in which this increase took place is 

called the average acceleration. 



�⃗�𝑎𝑣 =
∆�⃗⃗�

∆𝑡
 

�⃗�𝑎𝑣 has the direction of velocity increase ∆�⃗⃗�, whereby its value and return depend 

on the time interval of its determination ∆𝑡. 

 

Besides the average acceleration, there is also an instantaneous acceleration �⃗�.  

In order to determine the instantaneous acceleration, we use the velocity hodograph

 

The instantaneous acceleration vector is directed along the tangent to the velocity 

hodograph. 

Instantaneous acceleration 

�⃗� = lim
∆𝑡→0

∆�⃗⃗�

∆𝑡
=

𝑑�⃗⃗�

𝑑𝑡
= �̇⃗⃗�(𝑡) = �̈�(𝑡) 

 

 

 

 



 

 

CURVILINEAR MOVEMENT 

 

When a point's path is a plane curve, its natural directions are tangent and normal. 

 

𝜌 - radius of curvature lying on the line of the normal unit vector �̂�. 

�⃗⃗� - velocity on the line of the tangential unit vector �̂� 

𝜌 =
1

𝐶
 

C – curvature, 

𝐶𝑎𝑣 =
Δ𝜙

Δ𝑠
 

𝐶𝑎𝑣 – average curvature of MM1 curve 

curvature at a point 

𝐶 = lim
∆𝑡→0

Δ𝜙

Δ𝑠
=

d𝜙

d𝑠
 

 



TANGENTIAL AND NORMAL ACCELERATION 

The acceleration �⃗� of a point M moving along a spatial curve must lie in a strictly 

tangent plane, because as a derivative of the velocity �⃗⃗�, it is tangent to the velocity 

hodograph of this point. Moreover, the velocity vector is always tangent to the curve 

along which the point moves. 

It is assumed that the point follows the curve from M to M1. It has a velocity �⃗⃗� at M 

and a velocity �⃗⃗�1at M1. Let us introduce two unit vectors into the system, a tangent �̂�, 

lying in the velocity direction �⃗⃗�, and a normal one �̂�, directed to the center of the 

curvature. 

 

The velocity vector gain will be 

∆�⃗⃗� = �⃗⃗�1 − �⃗⃗� 

 

transforming the expression we will get, 

�⃗⃗�1 = �⃗⃗� + ∆�⃗⃗� 

 

Further, we can see that the∆�⃗⃗� vector can also be written as the sum of two vectors 

∆𝑉′⃗⃗⃗⃗ and ∆𝑉"⃗⃗⃗⃗⃗, which will lie on the tangent and normal directions respectively. 

∆�⃗⃗� = ∆𝑉′⃗⃗⃗⃗ + ∆𝑉"⃗⃗⃗⃗⃗ = ∆𝑉′�̂� + ∆𝑉"�̂� 



Earlier we wrote that acceleration �⃗� is equal to: 

�⃗� = lim
∆𝑡→0

∆�⃗⃗�

∆𝑡
 

We will now write this equation using the introduced vectors. 

�⃗� = lim
∆𝑡→0

∆�⃗⃗�

∆𝑡
= lim

∆𝑡→0

∆𝑉′⃗⃗⃗⃗

∆𝑡
+ lim

∆𝑡→0

∆𝑉"⃗⃗⃗⃗⃗

∆𝑡
= �̂� lim

∆𝑡→0

∆𝑉′

∆𝑡
+ �̂� lim

∆𝑡→0

∆𝑉"

∆𝑡
= �̂�𝑎𝜏 + �̂�𝑎𝑛 

The above equation can generally be written as follows. 

�⃗� = �⃗�𝜏 + �⃗�𝑛 

The total acceleration is then the sum of the tangential and normal acceleration. 

Based on the above conclusion, let's try to write both components of acceleration 

with the velocities as given in points M and M1. 

∆𝑉′ = 𝑉1 cos Δ𝜙 − 𝑉 

∆𝑉" = 𝑉1 sin Δ𝜙 

Let's start with the component in the tangential direction 

�⃗�𝜏 = �̂� lim
∆𝑡→0

∆𝑉′

∆𝑡
= �̂� lim

∆𝑡→0

𝑉1 cos Δ𝜙 − 𝑉

∆𝑡
= �̂� lim

∆𝑡→0

𝑉1 − 𝑉

∆𝑡
=

𝑑𝑉

𝑑𝑡
�̂� 

if Δ𝜙 → 0 𝑡ℎ𝑒𝑛 cos Δ𝜙 ≈ 1;                  𝑉1 − 𝑉 = ∆𝑉 

The final equation will be 

�⃗�𝜏 =
𝑑𝑉

𝑑𝑡
�̂� 

 

Once we know how we can find the tangential acceleration, let's do the same for the 

normal component of the acceleration. 

if Δ𝜙 → 0 𝑡ℎ𝑒𝑛 sin Δ𝜙 ≈ ∆𝜙; 

�⃗�𝑛 = �̂� lim
∆𝑡→0

∆𝑉"

∆𝑡
= �̂� lim

∆𝑡→0

𝑉1 sin Δ𝜙

∆𝑡
= �̂� lim

∆𝑡→0

𝑉1Δ𝜙

∆𝑡
= �̂� lim

∆𝑡→0
𝑉1

Δ𝜙

∆𝑡
∗

Δ𝑠

∆𝑠

= �̂� lim
∆𝑡→0

𝑉1 ∗ lim
∆𝑠→0

Δ𝜙

∆𝑠
∗ lim

∆𝑡→0

∆𝑠

∆𝑡
 

We can see that: 

lim
∆𝑡→0

𝑉1 = 𝑉; 

lim
∆𝑠→0

Δ𝜙

∆𝑠
=

1

𝜌
; 

lim
∆𝑡→0

∆𝑠

∆𝑡
= 𝑉; 



 

Then: 

�⃗�𝑛 = �̂� lim
∆𝑡→0

𝑉1 ∗ lim
∆𝑠→0

Δ𝜙

∆𝑠
∗ lim

∆𝑡→0

∆𝑠

∆𝑡
= �̂� ∗ 𝑉 ∗

1

𝜌
∗  𝑉 = �̂�

𝑉2

𝜌
 

Ultimately, taking both components of total acceleration into account, we get the 

following formula 

�⃗� = �⃗�𝜏 + �⃗�𝑛 =
𝑑𝑉

𝑑𝑡
�̂� + �̂�

𝑉2

𝜌
 

 

𝑎 = √𝑎𝜏
2 + 𝑎𝑛

2 = √(
𝑑𝑉

𝑑𝑡
)

2

+
𝑉4

𝜌2
 

sin 𝛼 =
𝑎𝑛

𝑎
 

cos 𝛼 =
𝑎𝜏

𝑎
 

 

ACCELERATION AND VELOCITY IN A RECTANGULAR COORDINATE SYSTEM 

Parametric equations of motion will take the following form. 

𝑥 = 𝑓1(𝑡);  𝑦 = 𝑓2(𝑡);  𝑧 = 𝑓3(𝑡) 

 

In order to obtain the velocity, one must differentiate once the above parametric equations 

of motion. Then we get projections of the velocity vector on the appropriate axes of the 

coordinate system. 

�̇� = 𝑉𝑥 =
𝑑𝑥

𝑑𝑡
 

�̇� = 𝑉𝑦 =
𝑑𝑦

𝑑𝑡
 

�̇� = 𝑉𝑧 =
𝑑𝑧

𝑑𝑡
 



�⃗⃗� = 𝑉𝑥�̂� + 𝑉𝑦�̂� + 𝑉𝑧�̂� = �̇��̂� + �̇��̂� + �̇��̂� 

Then it is enough to calculate the velocity vector modulus according to the equation. 

𝑉 = |�⃗⃗⃗�| = √𝑉𝑥
2 + 𝑉𝑦

2 + 𝑉𝑧
2 

 

Further, in order to determine the acceleration, one should differentiate the previously 

obtained equations of the projections of velocity on individual axes. In this way, we will 

obtain projections of the acceleration vector on the appropriate axes of the coordinate 

system. 

𝑎𝑥 =
𝑑𝑉𝑥

𝑑𝑡
=

𝑑2𝑥

𝑑𝑡2
= �̈� 

𝑎𝑦 =
𝑑𝑉𝑦

𝑑𝑡
=

𝑑2𝑦

𝑑𝑡2
= �̈� 

𝑎𝑧 =
𝑑𝑉𝑧

𝑑𝑡
=

𝑑2𝑧

𝑑𝑡2
= �̈� 

 

�⃗� = 𝑎𝑥�̂� + 𝑎𝑦�̂� + 𝑎𝑧�̂� 

Then it is enough to calculate the acceleration vector modulus according to the equation. 

𝑎 = |�⃗⃗�| = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 

To fully determine the acceleration of a point, one must also find the tangent and normal 

values of the total acceleration. Below are the calculation of acceleration components for the 

plane system. 

𝑎𝜏 =
|𝑑𝑉|

𝑑𝑡
= �̇� =

2�̇�𝑥𝑉𝑥 + 2�̇�𝑦𝑉𝑦

2√𝑉𝑥
2 + 𝑉𝑦

2
=

𝑎𝑥𝑉𝑥 + 𝑎𝑦𝑉𝑦

𝑉
 

𝑎𝑛 = −
1

𝑉
(𝑎𝑦𝑉𝑥 − 𝑎𝑥𝑉𝑦) 

  


