Moment of momentum

Example. A body N with mass m_{1} rotates around the vertical axis " z " with a constant angular velocity ω_{o} where at the point O of the groove AB of the body N , at a distance AO from point A along the groove, there is a material point of mass m_{2}. At a certain moment ($\mathrm{t}=0$), a torque Mz starts acting on the system. At the moment $t=\tau$ the torque stops to acting, and at the same time the point L starts relative motion from point O along the groove $A B$ towards point B according to the formula OL . Determine the angular velocity of the body N for the times $\mathrm{t}=\tau$ and $\mathrm{t}=\mathrm{T}$, disregarding the resistance to rotation of the body H . Show the vectors. Dane: $m_{1}=200 \mathrm{~kg}, m_{2}=60 \mathrm{~kg}, \omega_{o}=2 \mathrm{~s}^{-1}, R=2 \mathrm{~m}$, $\alpha=120^{\circ}, O A=\frac{\sqrt{3}}{2}, M_{z}=101 \mathrm{Nm}, \tau=5 \mathrm{~s}, T=6 \mathrm{~s}, O L=\sqrt{3}(t-\tau)^{2}$

We use principle of the moment of momentum
Stage I, M_{Z} is acting

$$
\begin{gathered}
\frac{d \vec{K}^{o}}{d t}=\sum M_{i}^{o} \\
\frac{d K_{z}}{d t}=M_{z} \\
K_{z}=K_{z}{ }^{N}+K_{z}{ }^{L} \\
K_{z}^{N}=I_{z} * \omega \\
K_{z}{ }^{L}=m_{2} * V * O C \\
\vec{V}=\vec{V}_{R}+\vec{V}_{L}
\end{gathered}
$$

Since the point does not move at the beginning, there is no \vec{V}_{R}, so $V=V_{L}$.

$$
\begin{gathered}
K_{z}{ }^{L}=m_{2} * V_{L} * O C \\
V_{L}=\omega * O C \\
K_{z}{ }^{L}=m_{2} * V_{L} * O C
\end{gathered}
$$

$$
\begin{gathered}
K_{z}{ }^{L}=m_{2} * \omega * O C^{2} \\
K_{z}=\omega\left(I_{z}+m_{2} * O C^{2}\right)
\end{gathered}
$$

Finding the OC section

$$
\begin{gathered}
\frac{A F}{R}=\cos 30^{\circ} \\
A F=R \cos 30^{\circ}=\sqrt{3} \\
\frac{F C}{R}=\sin 30^{\circ} \\
F C=R \sin 30^{\circ}=1 \\
F O=A F-O A=\frac{\sqrt{3}}{2} \\
O C=\sqrt{F O^{2}+F C^{2}}=1,32
\end{gathered}
$$

The above geometrical relationships will be used at a later stage of the task. From the law of cosines.

$$
O C=\sqrt{O A^{2}+R^{2}-2 * O A * R * \cos 30^{\circ}}=1,32
$$

$$
\begin{gathered}
\frac{d K_{z}}{d t}=M_{z} \\
K_{z}=\int M_{z} d t \\
K_{z}=\int 101 d t
\end{gathered}
$$

$$
K_{z}=101 t+C_{1}
$$

Determination of the integration constant
For $t=0$, i.e. for the beginning of the movement, we know that the whole system was spinning with $\omega=\omega_{o}$

$$
\begin{gathered}
\omega_{o}\left(I_{z}+m_{2} * O C^{2}\right)=C_{1} \\
\omega\left(I_{z}+m_{2} * O C^{2}\right)=101 t+\omega_{o}\left(I_{z}+m_{2} * O C^{2}\right) \\
\omega=\omega_{o}+\frac{101 t}{I_{z}+m_{2} * O C^{2}}
\end{gathered}
$$

Now you only need to determine the moment of inertia of the circular disk with respect to the Z axis.

$$
I_{z}=\frac{m R^{2}}{2}=400
$$

Determination of $\omega(\tau)$, that is for the 5 th second of the movement.

$$
\omega(\tau)=\omega_{o}+\frac{101 \tau}{I_{z}+m_{2} * O C^{2}}=1
$$

Next we will calculate the moment of momentum value for τ.

$$
K_{z}(\tau)=\omega(\tau)\left(I_{z}+m_{2} * O C^{2}\right)=504,5
$$

Stage II M_{z} stops working, point L starts moving

$$
\begin{gathered}
M_{z}=0 \\
\frac{d K_{z}}{d t}=0 \Rightarrow K_{z}=\text { const } \Rightarrow K_{z}^{(\tau)}=K_{z}^{(T)}
\end{gathered}
$$

$$
\begin{gathered}
K_{Z}=K_{z}^{N}+K_{z}{ }^{L} \\
K_{z}^{N}=I_{z} * \omega_{T} \\
K_{z}{ }^{L}=(\vec{r} \times \vec{V}) * m_{2} \\
\vec{V}=\vec{V}_{R}+\vec{V}_{L} \\
K_{z}^{L}=\left(\vec{r} \times \vec{V}_{R}+\vec{r} \times \vec{V}_{L}\right) * m_{2} \\
K_{z}{ }^{L}=m_{2} * V_{L} * L C-m_{2} * V_{R} * L C \sin \left(90^{\circ}-\beta\right) \\
V_{L}=\omega_{T} * L C \\
V_{R}=\frac{d O L}{d t}=2 \sqrt{3}(t-\tau) \\
V_{R}(T)=3,46 \\
O L(T)=\sqrt{3}(t-\tau)=\sqrt{3} \\
L C=C O=1,32
\end{gathered}
$$

Because,

$$
\begin{gathered}
F O=\frac{\sqrt{3}}{2} ; L O=\sqrt{3}=2 * F O \\
L C \sin \left(90^{\circ}-\beta\right)=L C \cos \beta=F C ; F C=1 \\
K_{z}(T)=I_{Z} * \omega_{T}+m_{2} * \omega_{T} * L C^{2}-m_{2} * V_{R} * F C=504,5 \\
I_{Z} * \omega_{T}+m_{2} * \omega_{T} * L C^{2}-m_{2} * V_{R} * F C=504,5 \\
\omega_{T}=\frac{504,5+m_{2} * V_{R} * F C}{I_{z}+m_{2} * L C^{2}}=0,59
\end{gathered}
$$

