A body N with mass m_{1} rotates around the vertical axis " z " with a constant angular velocity ω_{0}, where at the point O of the groove $A B$ of the body N, at a distance $A O$ from point A along the groove, there is a material point of mass m_{2}. At a certain moment $(t=0)$, a torque Mz starts acting on the system. At the moment $t=\tau$ the torque stops to acting, and at the same time point L starts relative motion from point O along the groove $A B$ towards point B according to the formula OL. Determine the angular velocity of the body N for the times $t=\tau$ and $t=T$, disregarding the resistance to rotation of the body H . Show the vectors.

	$\begin{gathered} m_{1}=66 \mathrm{~kg} \\ m_{2}=10 \mathrm{~kg} \\ \omega_{o}=1,5 \mathrm{~s}^{-1} \\ b=2 \mathrm{~m} \\ c=1,5 \mathrm{~m} \\ A O=0 \mathrm{~m} \\ M z=15 \sqrt{t} \mathrm{Nm} \\ \tau=4 \mathrm{~s} \\ T=6,5 \mathrm{~s} \\ O L=0,5(t-\tau) \end{gathered}$
	$\begin{gathered} m_{1}=300 \mathrm{~kg} \\ m_{2}=50 \mathrm{~kg} \\ \omega_{o}=-2 \mathrm{~s}^{-1} \\ b=1,6 \mathrm{~m} \\ c=1 \mathrm{~m} \\ R=0,8 \mathrm{~m} \\ A O=0 \mathrm{~m} \\ M z=968 \mathrm{Nm} \\ \tau=1 \mathrm{~s} \\ T=2 \mathrm{~s} \\ O L=\frac{\pi R}{2}(t-\tau)^{2} \end{gathered}$
	$\begin{gathered} m_{1}=100 \mathrm{~kg} \\ m_{2}=40 \mathrm{~kg} \\ \omega_{o}=2 \mathrm{~s}^{-1} \\ b=2 \mathrm{~m} \\ c=\sqrt{2} \mathrm{~m} \\ R=- \\ \alpha=- \\ A O=\frac{\sqrt{2}}{2} \mathrm{~m} \\ M z=-90 \sqrt{t} \mathrm{Nm} \\ \tau=4 \mathrm{~s} \\ T=5 \mathrm{~s} \\ O L=\frac{\sqrt{2}}{4}(t-\tau) \end{gathered}$

	$m_{1}=40 \mathrm{~kg}$
$m_{2}=10 \mathrm{~kg}$	
$\omega_{0}=2 s^{-1}$	
$b=-$	
$c=-$	
$R=1 \mathrm{~m}$	
$\alpha=-$	
$A O=0 \mathrm{~m}$	
$M z=120 t \mathrm{Nm}$	
$\tau=1 \mathrm{~s}$	
$T=4 \mathrm{~s}$	

