Moment of the force. Divergent system of forces. - problems

1. Make a reduction of a given system of forces and define the resultant force. Data: $F_{1}=100 \mathrm{~N}$, $F_{2}=200 \mathrm{~N}, F_{3}=150 \mathrm{~N}, \mathrm{~F}_{4}=300 \mathrm{~N}$; points where forces are attached: $\mathrm{A}_{1}(5,5), \mathrm{A}_{2}(-2,8), A_{3}(-10,-5)$, $\mathrm{A}_{4}(10,-4)$; angles between positive part of axis X and direction of force: $\alpha_{1}=45^{\circ}, \alpha_{2}=150^{\circ}, \alpha_{3}=60^{\circ}, \alpha_{4}=300^{\circ}$.

2. Find reactions in supports. Data: $F_{1}=10 \mathrm{~N}, \mathrm{M}=10 \mathrm{Nm}, \alpha=60^{\circ}, \beta=30^{\circ}, a=2 \mathrm{~m}$.

3. Find reactions in supports. Data: $F_{1}=16 \mathrm{~N}, \mathrm{M}=6 \mathrm{Nm}, \mathrm{q}=2 \mathrm{~N} / \mathrm{m} \alpha=60^{\circ}, a=2 \mathrm{~m}$.

4. Find reactions in supports. Data: $F_{1}=20 N, F_{2}=10 N, M=8 N m, q=1 N / m \alpha=60^{\circ}, a=2 m$.

5. Find reactions in supports. Data: $F_{1}=18 N, F_{2}=10 N, M=6 N m, q=2 N / m \alpha=60^{\circ}, a=2 m$.

