Motion of a point on the circle
Example. Having given the equation of the rotational motion of the disc $1 \varphi(t)=3+20 t^{2}$ determine the equation of the translational motion of the solid A and $\omega_{1}, \omega_{2}, \omega_{3}, V_{M}, V_{N}, V_{A}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, a_{M}, a_{N}, a_{A}$

First we determine the angular velocity and angular acceleration for wheel 1. And then the linear velocity for point M. It can be seen that this point belongs to wheels 1 and 3 , therefore the linear velocities will be the same.

$$
\begin{gathered}
\omega_{1}=\frac{d \varphi(t)}{d t}=40 t \\
\varepsilon_{1}=\frac{d^{2} \varphi(t)}{d t^{2}}=40 \\
V_{M}=\omega_{1} * r_{1}=40 t * 4 r=160 t r \\
V_{M}=\omega_{3} * r_{3} \Rightarrow \omega_{3}=\frac{V_{M}}{r_{3}}=\frac{160 t r}{2 r}=80 t \\
\varepsilon_{3}=\frac{d \omega_{3}}{d t}=80 \\
a_{M}^{n}=\omega_{1}^{2} * 4 r=(40 t)^{2} * 4 r=6400 r t^{2} \\
a_{M}^{\tau}=\varepsilon_{1} * 4 r=160 r \\
a_{M}=\sqrt{a_{M}^{2}+a_{M}^{\tau 2}}=\sqrt{(160 r)^{2}+\left(6400 r t^{2}\right)^{2}}
\end{gathered}
$$

Then we can look at point N . The point is connected to wheel 1 by a transmission belt. Therefore the linear velocity on the circumference of the smaller wheel 1 will be the same as the velocity of point N .

$$
\begin{gathered}
V_{N}=\omega_{1} * 2 r=40 t * 2 r=80 t r \\
V_{N}=\omega_{2} * 2 r \Rightarrow \omega_{2}=\frac{V_{N}}{2 r}=\frac{80 t r}{2 r}=40 t \\
\varepsilon_{2}=\frac{d \omega_{2}}{d t}=40 \\
\omega_{1}=\omega_{2} ; \varepsilon_{1}=\varepsilon_{2} \Rightarrow \varphi_{1}=\varphi_{2} \\
a_{N}^{n}=\omega_{2}^{2} * 2 r=(40 t)^{2} * 2 r=3200 r t^{2} \\
a_{N}^{\tau}=\varepsilon_{2} * 2 r=80 r \\
a_{N}=\sqrt{a_{N}^{n 2}+a_{N}^{\tau}}=\sqrt{(80 r)^{2}+\left(3200 r t^{2}\right)^{2}}
\end{gathered}
$$

Finally, we turn to point A. It is clearly visible that the linear shift of point A will be equal to the length of the rope unwound from the arc s.

$$
\begin{gathered}
s=\varphi * r=\varphi_{2} * r=3 r+20 r t^{2} \\
V_{A}=\frac{d s}{d t}=\frac{d\left(3 r+20 r t^{2}\right)}{d t}=40 t r \\
a_{A}=\frac{d V_{A}}{d t}=40 r
\end{gathered}
$$

