1. The $A B$ rod is attached at the ends to the ground, as shown in the figure. Calculate the reactions at point $A\left(R_{A}\right)$ and $B\left(R_{B}\right)$ if the bar is in equilibrium under the influence of force P_{1}. Data: $P_{1}=$ $100[N], \alpha=45^{\circ}, \beta=15^{\circ}$. Unknown: R_{A}, R_{B}.

2. The $A B$ rod is attached to the ground at point A, and connected to the rope at point B as shown in the figure. Calculate the reaction at point $A\left(R_{A}\right)$ and force in the rope $\left(S_{B C}\right)$ if the bar is in equilibrium under the influence of force P_{1}. Data: $P_{1}=140[N], \alpha=30^{\circ}, \beta=15^{\circ}$. Unknown: R_{A}, $S_{B C}$.

3. Plate is attached to the ground at point A, and connected to the rope at point B as shown in the figure. Calculate the reaction at point $A\left(R_{A}\right)$ and force in the rope $\left(S_{B C}\right)$ if the plate is in equilibrium under the influence of force P_{1}. Data: $P_{1}=40[N], \alpha=60^{\circ}, \beta=30^{\circ}$. Unknown: R_{A}, $S_{B} C$.

4. A square plate with sides equal $3 a$ is attached to the ground at point A, and B as shown in the figure. Calculate the reaction at point $A\left(R_{A}\right)$ and $B\left(R_{B}\right)$ if the plate is in equilibrium under the influence of force P_{1}. Data: $P_{1}=400[N], \alpha=15^{\circ}$. Unknown: R_{A}, R_{B}.

